The Maximum Entropy Method Of Moments And Bayesian Probability Theory
نویسنده
چکیده
The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In following section, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory and it will be shown that all of the technical problems with the maximum entropy method of moments disappear, and that one gets posterior probabilities for the parameters appearing in the problem as well as error bars on the resulting density function.
منابع مشابه
Determination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملComparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملApproximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method
We develop a complete convergence theory for the Maximum Entropy method based on moment matching for a sequence of approximate statistical moments estimated by the Multilevel Monte Carlo method. Under appropriate regularity assumptions on the target probability density function, the proposed method is superior to the Maximum Entropy method with moments estimated by the Monte Carlo method. New t...
متن کاملMaximum Probability and Maximum Entropy methods: Bayesian interpretation
(Jaynes’) Method of (Shannon-Kullback’s) Relative Entropy Maximization (REM or MaxEnt) can be at least in the discrete case according to the Maximum Probability Theorem (MPT) viewed as an asymptotic instance of the Maximum Probability method (MaxProb). A simple bayesian interpretation of MaxProb is given here. MPT carries the interpretation over into REM.
متن کاملA Bayesian analysis of scale - invariant processes Report
We have demonstrated that the Maximum Entropy (ME) principle in the context of Bayesian probability theory can be used to derive the probability distributions of those processes characterized by its scaling properties including multiscaling moments and geometric mean. We started from a proof-of-concept case of a power-law probability distribution, followed by the general case of multifractality...
متن کامل